
NAG C Library Function Document

nag_zgebal (f08nvc)

1 Purpose

nag_zgebal (f08nvc) balances a complex general matrix in order to improve the accuracy of computed
eigenvalues and/or eigenvectors.

2 Specification

void nag_zgebal (Nag_OrderType order, Nag_JobType job, Integer n, Complex a[],
Integer pda, Integer *ilo, Integer *ihi, double scale[], NagError *fail)

3 Description

nag_zgebal (f08nvc) balances a complex general matrix A. The term ‘balancing’ covers two steps, each of
which involves a similarity transformation of A. The function can perform either or both of these steps.

1. The function first attempts to permute A to block upper triangular form by a similarity transformation:

PAPT ¼ A0 ¼
A0

11 A0
12 A0

13

0 A0
22 A0

23

0 0 A0
33

1
A

0
@

where P is a permutation matrix, and A0
11 and A0

33 are upper triangular. Then the diagonal elements

of A0
11 and A0

33 are eigenvalues of A. The rest of the eigenvalues of A are the eigenvalues of the

central diagonal block A0
22, in rows and columns ilo to ihi. Subsequent operations to compute the

eigenvalues of A (or its Schur factorization) need only be applied to these rows and columns; this can
save a significant amount of work if ilo > 1 and ihi < n. If no suitable permutation exists (as is often

the case), the function sets ilo ¼ 1 and ihi ¼ n, and A0
22 is the whole of A.

2. The function applies a diagonal similarity transformation to A0, to make the rows and columns of A0
22

as close in norm as possible:

A00 ¼ DA0D�1 ¼
I 0 0

0 D22 0

0 0 I

1
A

0
@ A0

11 A0
12 A0

13

0 A0
22 A0

23

0 0 A0
33

1
A

0
@

I 0 0

0 D�1
22 0

0 0 I

1
A

0
@ :

This scaling can reduce the norm of the matrix (that is, kA00
22k < kA0

22k) and hence reduce the effect
of rounding errors on the accuracy of computed eigenvalues and eigenvectors.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08nvc

[NP3645/7] f08nvc.1

2: job – Nag_JobType Input

On entry: indicates whether A is to be permuted and/or scaled (or neither), as follows:

if job ¼ Nag DoNothing, A is neither permuted nor scaled (but values are assigned to ilo,
ihi and scale);

if job ¼ Nag Permute, A is permuted but not scaled;

if job ¼ Nag Scale, A is scaled but not permuted;

if job ¼ Nag DoBoth, A is both permuted and scaled.

Constraint: job ¼ Nag DoNothing, Nag Permute, Nag Scale or Nag DoBoth.

3: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

4: a½dim� – Complex Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ.
Where Aði; jÞ appears in this document, it refers to the array element

if order ¼ Nag ColMajor, a½ðj� 1Þ � pdaþ i� 1�;
if order ¼ Nag RowMajor, a½ði� 1Þ � pdaþ j� 1�.

On entry: the n by n matrix A.

On exit: a is overwritten by the balanced matrix.

a is not referenced if job ¼ Nag DoNothing.

5: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda � maxð1; nÞ.

6: ilo – Integer * Output

7: ihi – Integer * Output

On exit: the values ilo and ihi such that on exit Aði; jÞ is zero if i > j and 1 � j < ilo or
ihi < i � n.

If job ¼ Nag DoNothing or Nag Scale, ilo ¼ 1 and ihi ¼ n.

8: scale½dim� – double Output

Note: the dimension, dim, of the array scale must be at least maxð1; nÞ.
On exit: details of the permutations and scaling factors applied to A. More precisely, if pj is the

index of the row and column interchanged with row and column j and dj is the scaling factor used

to balance row and column j then

scale½j� 1� ¼
pj; j ¼ 1; 2; . . . ; ilo � 1

dj; j ¼ ilo; ilo þ 1; . . . ; ihi and

pj; j ¼ ihi þ 1; ihi þ 2; . . . ; n:

8<
:

The order in which the interchanges are made is n to ihi þ 1 then 1 to ilo � 1.

9: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

f08nvc NAG C Library Manual

f08nvc.2 [NP3645/7]

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The errors are negligible, compared with those in subsequent computations.

8 Further Comments

If the matrix A is balanced by this function, then any eigenvectors computed subsequently are eigenvectors

of the matrix A00 (see Section 3) and hence nag_zgebak (f08nwc) must then be called to transform them
back to eigenvectors of A.

If the Schur vectors of A are required, then this function must not be called with job ¼ Nag Scale or
Nag DoBoth, because then the balancing transformation is not unitary. If this function is called with

job ¼ Nag Permute, then any Schur vectors computed subsequently are Schur vectors of the matrix A00,
and nag_zgebak (f08nwc) must be called (with side ¼ Nag RightSide) to transform them back to Schur
vectors of A.

The total number of real floating-point operations is approximately proportional to n2.

The real analogue of this function is nag_dgebal (f08nhc).

9 Example

To compute all the eigenvalues and right eigenvectors of the matrix A, where

A ¼

1:50� 2:75i 0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i
�8:06� 1:24i �2:50� 0:50i 0:00þ 0:00i �0:75þ 0:50i
�2:09þ 7:56i 1:39þ 3:97i �1:25þ 0:75i �4:82� 5:67i
6:18þ 9:79i �0:92� 0:62i 0:00þ 0:00i �2:50� 0:50i

1
CCA

0
BB@ :

The program first calls nag_zgebal (f08nvc) to balance the matrix; it then computes the Schur factorization
of the balanced matrix, by reduction to Hessenberg form and the QR algorithm. Then it calls nag_ztrevc
(f08qxc) to compute the right eigenvectors of the balanced matrix, and finally calls nag_zgebak (f08nwc)
to transform the eigenvectors back to eigenvectors of the original matrix A.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08nvc

[NP3645/7] f08nvc.3

9.1 Program Text

/* nag_zgebal (f08nvc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, ihi, ilo, j, m, n, pda, pdh, pdvr;
Integer scale_len, tau_len, w_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *a=0, *h=0, *tau=0, *vl=0, *vr=0, *w=0;
double *scale=0;
Boolean *select=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define H(I,J) h[(J-1)*pdh + I - 1]
#define VR(I,J) vr[(J-1)*pdvr + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define H(I,J) h[(I-1)*pdh + J - 1]
#define VR(I,J) vr[(I-1)*pdvr + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08nvc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);

#ifdef NAG_COLUMN_MAJOR
pda = n;
pdh = n;
pdvr = n;

#else
pda = n;
pdh = n;
pdvr = n;

#endif
scale_len = n;
tau_len = n;
w_len = n;

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, Complex)) ||

!(h = NAG_ALLOC(n * n, Complex)) ||
!(scale = NAG_ALLOC(scale_len, double)) ||
!(tau = NAG_ALLOC(tau_len, Complex)) ||
!(vl = NAG_ALLOC(1 * 1, Complex)) ||
!(vr = NAG_ALLOC(n * n, Complex)) ||
!(w = NAG_ALLOC(w_len, Complex)) ||
!(select = NAG_ALLOC(1, Boolean)))

{
Vprintf("Allocation failure\n");
exit_status = -1;

f08nvc NAG C Library Manual

f08nvc.4 [NP3645/7]

goto END;
}

/* Read A from data file */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
}

Vscanf("%*[^\n] ");

/* Balance A */
f08nvc(order, Nag_DoBoth, n, a, pda, &ilo, &ihi, scale, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08nvc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Reduce A to upper Hessenberg form H = (Q**H)*A*Q */
f08nsc(order, n, ilo, ihi, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08nsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Copy A to H and VR */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

{
H(i,j).re = A(i,j).re;
H(i,j).im = A(i,j).im;
VR(i,j).re = A(i,j).re;
VR(i,j).im = A(i,j).im;

}
}

/* Form Q explicitly, storing the result in VR */
f08ntc(order, n, 1, n, vr, pdvr, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08ntc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Calculate the eigenvalues and Schur factorization of A */
f08psc(order, Nag_Schur, Nag_UpdateZ, n, ilo, ihi, h, pdh,

w, vr, pdvr, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08psc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
Vprintf(" Eigenvalues\n");
for (i = 0; i < n; ++i)

Vprintf(" (%7.4f,%7.4f)", w[i].re, w[i].im);
Vprintf("\n");
/* Calculate the eigenvectors of A, storing the result in VR */
f08qxc(order, Nag_RightSide, Nag_BackTransform, select, n,

h, pdh, vl, 1, vr, pdvr, n, &m, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08qxc.\n%s\n", fail.message);
exit_status = 1;
goto END;

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08nvc

[NP3645/7] f08nvc.5

}
f08nwc(order, Nag_DoBoth, Nag_RightSide, n, ilo, ihi, scale,

m, vr, pdvr, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08nwc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print eigenvectors */
Vprintf("\n");
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, m, vr, pdvr,

Nag_BracketForm, "%7.4f", "Contents of array VR",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:
if (a) NAG_FREE(a);
if (h) NAG_FREE(h);
if (scale) NAG_FREE(scale);
if (tau) NAG_FREE(tau);
if (vl) NAG_FREE(vl);
if (vr) NAG_FREE(vr);
if (w) NAG_FREE(w);
if (select) NAG_FREE(select);

return exit_status;
}

9.2 Program Data

f08nvc Example Program Data
4 :Value of N

(1.50,-2.75) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
(-8.06,-1.24) (-2.50,-0.50) (0.00, 0.00) (-0.75, 0.50)
(-2.09, 7.56) (1.39, 3.97) (-1.25, 0.75) (-4.82,-5.67)
(6.18, 9.79) (-0.92,-0.62) (0.00, 0.00) (-2.50,-0.50) :End of matrix A

9.3 Program Results

f08nvc Example Program Results

Eigenvalues
(-1.2500, 0.7500) (-1.5000,-0.4975) (-3.5000,-0.5025) (1.5000,-2.7500)

Contents of array VR
1 2 3 4

1 (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.1452, 0.0000)
2 (0.0000, 0.0000) (-0.0616, 0.0413) (0.4613,-0.0000) (-0.2072,-0.2450)
3 (1.0000, 0.0000) (0.6032,-0.3968) (0.2983, 0.7017) (0.7768, 0.2232)
4 (0.0000, 0.0000) (0.0822, 0.0000) (0.4251, 0.2850) (-0.0119, 0.4372)

f08nvc NAG C Library Manual

f08nvc.6 (last) [NP3645/7]

	f08nvc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	job
	n
	a
	pda
	ilo
	ihi
	scale
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

