f08 — Least-squares and Eigenvalue Problems (LAPACK) f08nvc

NAG C Library Function Document

nag zgebal (f08nvc)

1 Purpose

nag_zgebal (f08nvc) balances a complex general matrix in order to improve the accuracy of computed
eigenvalues and/or eigenvectors.

2 Specification

void nag_zgebal (Nag_OrderType order, Nag_JobType job, Integer n, Complex a[],
Integer pda, Integer *ilo, Integer *ihi, double scale[], NagError *fail)

3 Description

nag_zgebal (f08nvc) balances a complex general matrix A. The term ‘balancing’ covers two steps, each of
which involves a similarity transformation of A. The function can perform either or both of these steps.

1. The function first attempts to permute A to block upper triangular form by a similarity transformation:

/ / l
11 12 13

PAPT = A/ - 0 A/22 A:23
0 0 33

where P is a permutation matrix, and A}, and A%; are upper triangular. Then the diagonal elements
of A}, and Aj%; are eigenvalues of A. The rest of the eigenvalues of A are the eigenvalues of the
central diagonal block A%, in rows and columns i, to i,;. Subsequent operations to compute the
eigenvalues of A (or its Schur factorization) need only be applied to these rows and columns; this can
save a significant amount of work if 4;,, > 1 and ¢;; < n. If no suitable permutation exists (as is often
the case), the function sets i, = 1 and i,; = n, and A5, is the whole of A.

2. The function applies a diagonal similarity transformation to A’, to make the rows and columns of A5,
as close in norm as possible:

1 I 0 O I o 13 I 0 1 0
A" = .DA/D7 = 0 .D22 0 0 A/22 A/23 0 D52 O
0 0 I 0 0 Ay/\o o0 I

This scaling can reduce the norm of the matrix (that is, ||A%|| < ||45,]|) and hence reduce the effect
of rounding errors on the accuracy of computed eigenvalues and eigenvectors.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_ RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

[NP3645/7] f08nve. 1

f08nve NAG C Library Manual

2: job — Nag JobType Input
On entry: indicates whether A is to be permuted and/or scaled (or neither), as follows:

if job = Nag_DoNothing, A is neither permuted nor scaled (but values are assigned to ilo,
ihi and scale);

if job = Nag Permute, A is permuted but not scaled;
if job = Nag_Scale, A is scaled but not permuted;
if job = Nag DoBoth, A is both permuted and scaled.
Constraint: job = Nag_DoNothing, Nag_Permute, Nag_Scale or Nag_DoBoth.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

4: a[dim| — Complex Input/Output
Note: the dimension, dim, of the array a must be at least max(1, pda x n).
Where A(i,j) appears in this document, it refers to the array element
if order = Nag_ColMajor, a[(j— 1) x pda—+i—1];
if order = Nag_RowMajor, a[(i — 1) x pda + j — 1].
On entry: the n by n matrix A.
On exit: a is overwritten by the balanced matrix.

a is not referenced if job = Nag_DoNothing.

5: pda — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda > max(1,n).
6: ilo — Integer * Output
7: ihi — Integer * Output

On exit: the values 4, and i;; such that on exit A(é,j) is zero if ¢ >j and 1 <j <7, or
ihi <1 S n.

If job = Nag_DoNothing or Nag_Scale, ¢;, = 1 and i;; = n.

8: scale[dim] — double Output
Note: the dimension, dim, of the array scale must be at least max(1,n).

On exit: details of the permutations and scaling factors applied to A. More precisely, if p; is the
index of the row and column interchanged with row and column j and d; is the scaling factor used
to balance row and column j then

pja j:1727"'7ilo_1
Scale[j — 1] = dj7 j: Z:lovilo +1, I 7ihi al’ld
Pjs J=tp+ Ly +2,...,n.

The order in which the interchanges are made is n to i;; + 1 then 1 to ¢, — 1.

9: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

f08nve.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08nvc

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.
NE_INT 2
On entry, pda = (value), n = {value).
Constraint: pda > max(1,n).
NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The errors are negligible, compared with those in subsequent computations.

8 Further Comments

If the matrix A is balanced by this function, then any eigenvectors computed subsequently are eigenvectors
of the matrix A” (see Section 3) and hence nag_zgebak (f08nwc) must then be called to transform them
back to eigenvectors of A.

If the Schur vectors of A are required, then this function must not be called with job = Nag_Scale or
Nag DoBoth, because then the balancing transformation is not unitary. If this function is called with
job = Nag_Permute, then any Schur vectors computed subsequently are Schur vectors of the matrix A”,
and nag_zgebak (f08nwc) must be called (with side = Nag_RightSide) to transform them back to Schur
vectors of A.

The total number of real floating-point operations is approximately proportional to n?.

The real analogue of this function is nag_dgebal (f08nhc).

9 Example

To compute all the eigenvalues and right eigenvectors of the matrix A, where

1.50 — 2.75¢ 0.00 + 0.00¢ 0.00 + 0.00¢ 0.00 + 0.00¢
—8.06 —1.24¢ —2.50 — 0.50¢ 0.00 4+ 0.00¢ —0.7540.50¢
—2.09 + 7.561 1.39+3.97¢ —-1.25+0.751 —4.82-5.67:

6.184+9.79: —0.92 —0.62¢ 0.00 +0.00¢ —2.50 —0.50¢

A=

The program first calls nag_zgebal (f08nvc) to balance the matrix; it then computes the Schur factorization
of the balanced matrix, by reduction to Hessenberg form and the QR algorithm. Then it calls nag_ztrevc
(f08qxc) to compute the right eigenvectors of the balanced matrix, and finally calls nag_zgebak (f08nwc)
to transform the eigenvectors back to eigenvectors of the original matrix A.

[NP3645/7] f08nve.3

f08nvce

9.1 Program Text

/* nag_zgebal (£08nvc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)

{
/* Scalars *x/

Integer i, ihi, ilo, j, m, n, pda, pdh, pdvr;

Integer scale_len, tau_len, w_len;
Integer exit_status=0;

NagError fail;

Nag_OrderType order;

/* Arrays */

Complex *a=0, *h=0, *tau=0, *v1=0, *vr=0, *w=0;

double *scale=0;
Boolean #*select=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]

#define H(I,J) h[(J-1)*pdh + I - 1]

#define VR(I,J) vr[(J-1)*pdvr + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + J - 1]

#define H(I,J) h[(I-1)*pdh + J - 1]

#define VR(I,J) vr[(I-1)*pdvr + J - 1]
order = Nag_RowMajor;

#endif

INIT _FAIL(fail);

Vprintf ("f08nvc Example Program Results\n\n");

/* Skip heading in data file */

Vscanf ("$*[*\n] ");

Vscanf ("$1d%*[*\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pda = n;

pdh = n;

pdvr = n;
#else

pda = n;

pdh = n;

pdvr = n;
#endif

scale_len =
tau_len = n;
w_len = n;

nj;

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, Complex)) ||
h = NAG_ALLOC(n * n, Complex)) ||

1(

! (

! (tau = NAG_ALLOC(tau_len, Complex)
(vl = NAG_ALLOC(1 * 1, Complex)) |
I (vr = NAG_ALLOC(n * n, Complex)) |
1(|
1()

scale = NAG_ALLOC(scale_len, double)) ||
) 1
\
\

w = NAG_ALLOC(w_len, Complex)) |
select = NAG_ALLOC(1l, Boolean))
{
Vprintf ("Allocation failure\n");
exit_status = -1;

f08nvc.4

NAG C Library Manual

[NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08nvc

goto END;
¥

/* Read A from data file *x/
for (i = 1; i <= n; ++1)
{
for (j = 1; j <= n; ++3j)
Vscanf (" (%1f , %1f)", &A(i,j).re, &A(i,J).im);
¥

Vscanf ("$*x[*\n] ");

/* Balance A */
f08nvc(order, Nag_DoBoth, n, a, pda, &ilo, &ihi, scale, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf ("Error from f08nvc.\n%s\n", fail.message);
exit_status = 1;
goto END;

3

/* Reduce A to upper Hessenberg form H = (Qx*H)*AxQ *x/
f08nsc(order, n, ilo, ihi, a, pda, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08nsc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Copy A to H and VR */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++3)
{
H(i,j).re = A(i,j).re;
H(i,j).im = A(i,]j).1im;
VR(i,j).re = A(i,j).re;
VR(i,j).im = A(i,]).im;
¥
}

/* Form Q explicitly, storing the result in VR */
f08ntc(order, n, 1, n, vr, pdvr, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08ntc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Calculate the eigenvalues and Schur factorization of A *x/
f08psc(order, Nag_Schur, Nag_UpdateZ, n, ilo, ihi, h, pdh,
w, vr, pdvr, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08psc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

Vprintf (" Eigenvalues\n");
for (i = 0; 1 < n; ++1)
Vprintf (" (%7.4f,%7.4f)", wlil.re, wl[i].im);
Vprintf ("\n") ;
/* Calculate the eigenvectors of A, storing the result in VR */
f08gxc(order, Nag_RightSide, Nag_BackTransform, select, n,
h, pdh, v1l, 1, vy, pdvr, n, &m, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08gxc.\n%s\n", fail.message);
exit_status = 1;
goto END;

[NP3645/7] f08nve.5

f08nve NAG C Library Manual

}
f08nwc (order, Nag_DoBoth, Nag_RightSide, n, ilo, ihi, scale,
m, vr, pdvr, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08nwc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print eigenvectors */

Vprintf ("\n") ;

x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, m, vr, pdvr,
Nag_BracketForm, "%7.4f", "Contents of array VR",
Nag_IntegerLabels, 0O, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)

{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
3
END:

if (a) NAG_FREE(a);
if (h) NAG_FREE (h);
if (scale) NAG_FREE (scale) ;

if (tau) NAG_FREE(tau) ;
if (vl) NAG_FREE(vl);
if (vr) NAG_FREE(vr) ;
if (w) NAG_FREE (w) ;

if (select) NAG_FREE (select);

return exit_status;

9.2 Program Data

f08nvc Example Program Data

4 :Value of N
(1.50,-2.75) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
(-8.06,-1.24) (-2.50,-0.50) (0.00, 0.00) (-0.75, 0.50)
(-2.09, 7.56) (1.39, 3.97) (-1.25, 0.75) (-4.82,-5.67)
(6.18, 9.79) (-0.92,-0.62) (0.00, 0.00) (-2.50,-0.50) :End of matrix A

9.3 Program Results

f08nvc Example Program Results

Eigenvalues
(-1.2500, 0.7500) (-1.5000,-0.4975) (-3.5000,-0.5025) (1.5000,-2.7500)

Contents of array VR

0.0000, 0.0000

1

) .0000, 0.0000
0.0000, 0.0000)

)

)

2

) 0.0000, 0.0000
.0616, 0.0413)

)

)

3
)
0.4613,-0.0000)
)
)

(0.

(-0.2072,-0.2450
(0.7768, 0.2232
(-0.0119, 0.4372

1.0000, 0.0000
0.0000, 0.0000

.6032,-0.3968
.0822, 0.0000

0.2983, 0.7017

4

1452, 0.0000)

)

)

0.4251, 0.2850)

0
0
0
0

—~ e~~~

(
(
(
(

S w N R

f08nvc.6 (last) [NP3645/7]

	f08nvc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	job
	n
	a
	pda
	ilo
	ihi
	scale
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

